Complexification, twistor theory and harmonic maps from Riemann surfaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexification, Twistor Theory, and Harmonic Maps from Riemann Surfaces

Penrose's twistor theory and many other ideas of mathematical physics are based on the notion of complexification. This notion is explained and examples of its apphcation in physics and mathematics are described. In particular, the well-known analogy between Yang-Mills fields and harmonic maps of Riemann surfaces becomes rather stronger after complexification. This strengthening is the main poi...

متن کامل

Harmonic maps from degenerating Riemann surfaces

We study harmonic maps from degenerating Riemann surfaces with uniformly bounded energy and show the so-called generalized energy identity. We find conditions that are both necessary and sufficient for the compactness in W 1,2 and C modulo bubbles of sequences of such maps. 2000 Mathematics Subject Classification: 58E20

متن کامل

Energy of Twisted Harmonic Maps of Riemann Surfaces

The energy of harmonic sections of flat bundles of nonpositively curved (NPC) length spaces over a Riemann surface S is a function Eρ on Teichmüller space TS which is a qualitative invariant of the holonomy representation ρ of π1(S). Adapting ideas of Sacks-Uhlenbeck, Schoen-Yau and Tromba, we show that the energy function Eρ is proper for any convex cocompact representation of the fundamental ...

متن کامل

Harmonic functions, central quadrics, and twistor theory

Solutions to the n-dimensional Laplace equation which are constant on a central quadric are found. The associated twistor description of the case n = 3 is used to characterise Gibbons-Hawking metrics with tri-holomorphic SL(2,C) symmetry.

متن کامل

Twistor fibrations giving primitive harmonic maps of finite type

Primitive harmonic maps of finite type from a Riemann surface M into a k-symmetric space G/H are obtained by integrating a pair of commuting Hamiltonian vector fields on certain finite-dimensional subspaces of loop algebras. We will clarify and generalize Ohnita and Udagawa’s results concerning homogeneous projections p : G/H →G/K , with H ⊂ K , preserving finite-type property for primitive har...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1984

ISSN: 0273-0979

DOI: 10.1090/s0273-0979-1984-15294-7